
Brute-Force Attacks on Whole-Disk Encryption
Attacking Passwords Instead of Encryption Keys

Gregory Hildstrom, CISSP

Product Development

Raytheon Trusted Computer Solutions

San Antonio, TX, USA

November, 18 2012

Abstract—This paper examines some simple brute-force methods

of password recovery for dm-crypt encrypted hard disk drives.

The methods are described, performance is analyzed, and the

attack method is compared to brute-force attacking the

encryption key instead of the password.

Keywords—dm-crypt; encryption; ESSIV; attack; AES

I. INTRODUCTION

Dm-crypt, which is included in most recent Linux kernels,

provides “transparent encryption of block devices using the

kernel crypto API”. [1] It is built on the same underlying

device-mapper infrastructure the Linux kernel already uses to

support redundant arrays of inexpensive disks (RAID) and

logical volume management (LVM). Dm-crypt has access to

ciphers, hashes, and block modes supported by the running

kernel and whatever crypto API modules are currently loaded.

The default full specification is aes-cbc-essiv:sha256, which

indicates AES with a 256-bit key for the cipher, cipher block

chaining (CBC) for the mode, encrypted sector-salt

initialization vector (ESSIV) for the per-sector initialization

vector, and SHA256 for hashing. Because this is the default

for dmsetup and cryptsetup when no additional command-line

options are specified, most users of Linux disk encryption

probably use these default settings. [1][2] This paper focuses

its efforts on brute force password recovery of dm-crypt

devices using this specification.

II. SEARCH SPACE

Attempting to recover a typical password involves a much

smaller search space than attempting to recover the encryption

key. For example, a 256-bit key has 2^256 = 1.16E+77

possible combinations and a strong 8-character password has

94^8 = 6.10E+15 possible combinations. The password search

space is at least 1.0E+62 times smaller than the encryption key

search space. There is a huge computational benefit even if

checking each password is 1000 times more computationally

intensive than checking each encryption key.

III. TEST SYSTEM

My test system was a dual-core 64-bit HP Pavilion g-series

laptop with 4GB RAM running Microsoft Windows 7 64-bit.

The Linux work was performed on a VMware Workstation 8

virtual machine with one processor core and 1GB RAM

running CentOS 6 64-bit.

IV. BASH, DM-CRYPT, DIFF TESTING

I started by creating a proof-of-concept bash script that created

an encrypted dm-crypt device, initialized it with some known

plaintext, and recovered the password by testing every

possible combination using operating system tools. For my

testing, I used 4-digit numeric passwords, like “1234”, to

prove the concepts in a reasonable amount of time. My

dmcrypt-known.sh script performed the following steps:

 Create empty file

 Add file as a loopback device with losetup -a

 Create the dm-crypt device with cryptsetup

create

 Initialize the dm-crypt device with known

plaintext

 Remove the dm-crypt device with cryptsetup

remove

 Loop possible passwords

o Create the dm-crypt device with

cryptsetup create

o Test known plaintext with dd/diff

o Print the password and exit if found

o Remove the dm-crypt device with

cryptsetup remove

V. BASH, DM-CRYPT, MOUNT TESTING

Next I created another bash script that created an encrypted

dm-crypt device, initialized it with an ext3 file system, and

again recovered the password by testing every possible

combination using operating system tools. My dmcrypt-

mount.sh script performed the following steps:

 Create empty file

 Add file as a loopback device with losetup -a

 Create the dm-crypt device with cryptsetup

create

 Create a file system on the dm-crypt device with

mkfs.ext3

 Remove the dm-crypt device with cryptsetup

remove

 Loop possible passwords

o Create the dm-crypt device with

cryptsetup create

o Try to mount the dm-crypt device with

mount

o Print the password and exit if found

o Remove the dm-crypt device with

cryptsetup remove

VI. CIPHER BLOCK MODE

The timing results for these first two approaches led me to

wonder if the overhead of setting up these transparent devices

in the kernel was significant compared to the actual hashing

and encryption operations, which led me to dig a bit deeper

into how this default specification actually works. The

smallest amount of data that the operating system can read

from or write to a hard disk drive is one sector, which is 512

bytes. To prevent undesirable cascading effects, each sector is

encrypted and decrypted independently as shown in Figure 1.

Ciphers like AES only encrypt or decrypt 16 bytes, 128 bits, at

a time. Thirty two of these cipher blocks are required to fill

one sector. If each cipher block were encrypted independently

with no other alterations, many attacks would be possible that

reduce the strength of the encryption scheme below brute-

force strength. To counteract this, cipher blocks are combined

with each other after and before encryption in various cipher-

block modes. Similarly, if sectors are treated independently

with no alterations, other attacks would be possible that reduce

the strength of the encryption scheme. To counteract this, each

sector is modified or initialized with some data that makes the

ciphertext too difficult to analyze. The cipher block chaining

(CBC) mode combines the previous encrypted block with the

current plaintext block prior to encryption of the current block

as shown in Figure 2. [3]

Figure 1. Hard Disk Sectors

Figure 2. Cipher Block Chaining (CBC) Mode

VII. ENCRYPTED SALT-SECTOR INITIALIZATION VECTOR

(ESSIV)

The strength of CBC is greatly improved if the initialization
data is difficult for an attacker to determine. Many simple
schemes used the sector number as the initialization data, but
that is very easy for an attacker to determine. As a result,
Fruhwirth developed the encrypted salt-sector initialization
vector (ESSIV) approach. The ESSIV approach encrypts the
sector number with a hash of the encryption key to determine
the IV. This makes the IV as difficult for an adversary to guess
as the encryption key itself because it combines key data with a
sector number that changes for each sector. [3]

VIII. BASH, OPENSSL, DIFF TESTING

Next I created another bash script that replicated dm-crypt

kernel operations with openssl to eliminate the entire kernel

device overhead. My openssl-kown.sh script performed the

following steps:

 Derive the key from the password with

sha256sum

 Derive the salt from the key with sha256sum

 Derive the IV from the salt and the sector

number with openssl

 Encrypt the known plaintext sector and save it

as a new sector with openssl

 Loop possible passwords

o Derive the key from the password with

sha256sum

o Derive the salt from the key with

sha256sum

o Derive the IV from the salt and the

sector number with openssl

o Decrypt the encrypted sector with

openssl

o Compare it to the known plaintext with

diff

o Print the password and exit if found

 Hard Disk

Sector 0 – 512 Bytes Sector 1 – 512 Bytes Sector 2 – 512 Bytes Sector 3 – 512 Bytes Sector … n

 Decrypted Sector 0 – 512 Bytes

Block 0 – 16 Bytes Block 1 – 16 Bytes Block 2 – 16 Bytes Block 3 – 16 Bytes Block … 32

AES XOR AES

Encrypted Sector 0 – 512 Bytes

Block 0 – 16 Bytes Block 1 – 16 Bytes Block 2 – 16 Bytes Block 3 – 16 Bytes Block … 32

IV 0 XOR AES XOR AES XOR AES

IX. PERFORMANCE RESULTS

The openssl approach was about 2.5 times faster than using

dm-crypt in the kernel because of the lower overhead. I

imagine that the process could be sped up by at least a factor

of 10 if a custom C program using the openssl libraries were

created. A custom program would perform faster than

interpreted bash scripting and it would eliminate many system

calls like forking other processes and file system I/O

compared to my test script. In addition, a cluster with 1600000

processor cores or 200000 8-core processors would be orders

of magnitude faster. Table 1 shows some actual timings and

performance estimates.

Table 1. Performance Results

X. FEASIBILITY AND ESTIMATES

The next question relates to feasibility of this approach.

Cracking a 4-digit personal identification number (PIN) style

password proved easy, but an 8-character strong (not

dictionary) password is much more difficult. My simple

openssl-known.sh script would require 1.57E+07 years to test

every possible 8-character strong password, which is not

feasible. A 10 times faster C program would require 1.57E+06

years to test every possible 8-character strong password,

which is still not feasible. The 200000-node 8-core cluster

would require just under a year to test every possible 8-

character strong password, but that computer would be near

the top of the world’s most powerful supercomputers list. The

problem becomes orders of magnitude more difficult if the

password is 9, 10, 11, or 12 characters using the entire

keyboard character set. Interestingly, a password would need

to be 40 characters long with a 94-character set to equal the

key space of the 256-bit encryption key. Table 2 shows

estimated brute force times for various search spaces.

Table 2. Estimates

XI. CONCLUSIONS

The brute force approach described in the paper could be made

much more powerful if a more intelligent password-generating

program like John The Ripper (JTR) were used. The

dictionary-based approach and word-mangling algorithms in

JTR have proven effective in password recovery from hashes

and it can fall back to pure brute force when necessary. This

same strategy would most likely be effective against

TrueCrypt and PGP Whole Disk encryption even though the

algorithm details will vary slightly. Any time an encryption

key is derived from the hash of a password and the password

length and password complexity result in significantly fewer

combinations than the binary encryption key, it is better to

directly attack the password than the key.

XII. BASH SCRIPTS

A. dmcrypt-known.sh

#!/bin/bash

variables ###

SECTORSIZE=512

SECTORS=100000

INITFILE="/dev/zero"

KNOWN="knownplaintext"

EFILE="encryptedfile"

EDEV="/dev/loop0"

DFILE="decryptedfile"

DDEV="/dev/mapper/$DFILE"

create and init the empty encrypted file ###

dd bs=$SECTORSIZE count=$SECTORS if=$INITFILE

of=$EFILE

losetup $EDEV $EFILE

md5sum $EDEV $EFILE

create encrypted file ###

echo "1234" | cryptsetup create $DFILE $EDEV

cryptsetup status $DFILE

dd bs=$SECTORSIZE if=$DDEV of=$DFILE

init the decrypted file for known plaintext ###

md5sum $DDEV

dd bs=$SECTORSIZE if=$INITFILE of=$DDEV

md5sum $DDEV

md5sum $EFILE

record known plaintext ###

dd bs=32 count=1 if=$DDEV of=$KNOWN

remove the decrypted file ###

cryptsetup remove $DDEV

password-cracking-type attack ###

for ((D3=0;$D3<=9;D3=$D3+1)); do

for ((D2=0;$D2<=9;D2=$D2+1)); do

for ((D1=0;$D1<=9;D1=$D1+1)); do

for ((D0=0;$D0<=9;D0=$D0+1)); do

 echo "Trying $D3$D2$D1$D0"

 echo "$D3$D2$D1$D0" | cryptsetup create $DFILE

$EDEV

 dd bs=32 count=1 if=$DDEV 2>/dev/null | diff -

$KNOWN >/dev/null 2>&1

 RC=$?

brute force implementation seconds passwords/second

bash/cryptsetup/diff 270 4.57

bash/cryptsetup/mount 250 4.94

bash/openssl/diff 100 12.34

c/estimated 10 123.40

c/cluster/estimated 6.25E-06 1.97E+08

digits 4 8 39 40 256

value set 0-9 a-zA-Z0-9~-/ a-zA-Z0-9~-/ a-zA-Z0-9~-/ 0-1

values 10 94 94 94 2

combinations 1.00E+04 6.10E+15 8.95E+76 8.42E+78 1.16E+77

bash/openssl/diff years 2.57E-05 1.57E+07 2.30E+68 2.16E+70 2.97E+68

c/estimated years 2.57E-06 1.57E+06 2.30E+67 2.16E+69 2.97E+67

c/cluster/estimated years 1.60E-12 9.78E-01 1.44E+61 1.35E+63 1.86E+61

 if [$RC == 0]; then

 echo "Password Found! $D3$D2$D1$D0"

 exit 0

 fi

 cryptsetup remove $DDEV

done

done

done

done

clean up ###

cryptsetup remove $DFILE

losetup -d $EDEV

B. dmcrypt-mount.sh

#!/bin/bash

variables ###

SECTORSIZE=512

SECTORS=100000

INITFILE="/dev/zero"

KNOWN="knownplaintext"

EFILE="encryptedfile"

EDEV="/dev/loop0"

DFILE="decryptedfile"

DDEV="/dev/mapper/$DFILE"

create and init the empty encrypted file ###

dd bs=$SECTORSIZE count=$SECTORS if=$INITFILE

of=$EFILE

losetup $EDEV $EFILE

md5sum $EDEV $EFILE

create encrypted file ###

echo "1234" | cryptsetup create $DFILE $EDEV

cryptsetup status $DFILE

mkfs.ext3 $DDEV

remove the decrypted file ###

cryptsetup remove $DDEV

password-cracking-type attack ###

for ((D3=0;$D3<=9;D3=$D3+1)); do

for ((D2=0;$D2<=9;D2=$D2+1)); do

for ((D1=0;$D1<=9;D1=$D1+1)); do

for ((D0=0;$D0<=9;D0=$D0+1)); do

 echo "Trying $D3$D2$D1$D0"

 echo "$D3$D2$D1$D0" | cryptsetup create $DFILE

$EDEV

 mount $DDEV /mnt/dmcrypt >/dev/null 2>&1

 RC=$?

 if [$RC == 0]; then

 echo "Password Found! $D3$D2$D1$D0"

 exit 0

 fi

 umount $DDEV >/dev/null 2>&1

 cryptsetup remove $DDEV

done

done

done

done

clean up ###

cryptsetup remove $DFILE

losetup -d $EDEV

C. openssl-known.sh

#!/bin/bash

encrypt()

{

PASSPHRASE=$1

PLAINTEXTFILE=$2

ENCRYPTEDFILE=$3

SECTOR="0"

create the encryption key from passphrase ###

KEYHEX=`echo -n $PASSPHRASE | sha256sum | awk

'{print $1}' | tr -d '\n'`

#echo KEYHEX: $KEYHEX

create the salt from the key ###

SALTHEX=`echo -n $KEYHEX | sha256sum | awk '{print

$1}' | tr -d '\n'`

#echo SALTHEX: $SALTHEX

create the iv from the salt ###

IVHEX=`echo -n 0 | openssl enc -aes-256-cbc -e -K

$SALTHEX -iv 0 | md5sum | awk '{print $1}' | tr -d '\n'`

#echo IVHEX: $IVHEX

create encrypted file ###

openssl enc -aes-256-cbc -in $PLAINTEXTFILE -out

$ENCRYPTEDFILE -e -K $KEYHEX -iv $IVHEX

}

decrypt()

{

PASSPHRASE=$1

ENCRYPTEDFILE=$2

PLAINTEXTFILE=$3

SECTOR="0"

create the encryption key from passphrase ###

KEYHEX=`echo -n $PASSPHRASE | sha256sum | awk

'{print $1}' | tr -d '\n'`

#echo KEYHEX: $KEYHEX

create the salt from the key ###

SALTHEX=`echo -n $KEYHEX | sha256sum | awk '{print

$1}' | tr -d '\n'`

#echo SALTHEX: $SALTHEX

create the iv from the salt ###

IVHEX=`echo -n 0 | openssl enc -aes-256-cbc -e -K

$SALTHEX -iv 0 | md5sum | awk '{print $1}' | tr -d '\n'`

#echo IVHEX: $IVHEX

create encrypted file ###

openssl enc -aes-256-cbc -in $ENCRYPTEDFILE -out

$PLAINTEXTFILE -d -K $KEYHEX -iv $IVHEX >/dev/null

2>&1

return $?

}

variables ###

SECTORSIZE=512

SECTORS=1

INITFILE="/dev/zero"

KNOWN="knownplaintext"

EFILE="encryptedfile"

EDEV="/dev/loop0"

DFILE="decryptedfile"

DDEV="/dev/mapper/$DFILE"

KEYHEX=""

SALTHEX=""

IVHEX=""

create known sector file ###

dd bs=$SECTORSIZE count=$SECTORS if=$INITFILE

of=$KNOWN

create encrypted file ###

encrypt "1234" $KNOWN $EFILE

password-cracking-type attack ###

for ((D3=0;$D3<=9;D3=$D3+1)); do

for ((D2=0;$D2<=9;D2=$D2+1)); do

for ((D1=0;$D1<=9;D1=$D1+1)); do

for ((D0=0;$D0<=9;D0=$D0+1)); do

 echo "Trying $D3$D2$D1$D0"

 decrypt "$D3$D2$D1$D0" $EFILE $DFILE

 diff $DFILE $KNOWN >/dev/null 2>&1

 RC=$?

 if [$RC == 0]; then

 echo "Password Found! $D3$D2$D1$D0"

 exit 0

 fi

done

done

done

done

clean up ###

REFERENCES

[1] Broz, M. (2012). dm-crypt: Linux kernel device-mapper crypto target.

Retrieved November 18, 2012, from
http://code.google.com/p/cryptsetup/wiki/DMCrypt

[2] Red Hat, Inc. (2010). cryptsetup(8) - Linux man page. Retrieved
November 18, 2012, from http://linux.die.net/man/8/cryptsetup

[3] Fruhwirth, C. (2005). New Methods in Hard Disk Encryption. Retrieved
November 18, 2012, from http://clemens.endorphin.org/nmihde/nmihde-
A4-os.pdf

http://code.google.com/p/cryptsetup/wiki/DMCrypt
http://linux.die.net/man/8/cryptsetup
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-os.pdf

